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The effect of abrogating the interferon (IFN) response on human cytomegalovirus (HCMV) replication was investigated using
primary human cells engineered to block either the production of or the response to type I IFNs. In IFN-deficient cells, HCMV
produced larger plaques and spread and replicated more rapidly than in parental cells. These cells demonstrate the vital role of
IFNs in controlling HCMV replication and provide useful tools to investigate the IFN response to HCMV.

Type I interferons (IFNs) play a crucial role in the control of
viral infection through inducing expression of a suite of inter-

feron-stimulated genes (ISGs), with many of these ISGs exhibiting
direct antiviral activity that serves to control viral replication (1,
2). IFNs can also act indirectly in the antiviral response by pro-
moting the activation and proliferation of innate and adaptive
immune effectors, including natural killer cells, dendritic cells,
and T and B cells (3, 4). Human cytomegalovirus (HCMV) is a
large double-stranded DNA (dsDNA) virus that is an important
pathogen associated with severe morbidity and mortality in the
immunosuppressed, especially in the allogeneic hematopoietic
stem cell transplant (HSCT) setting (5). HCMV is also the leading
infectious cause of birth defects in the developed world (6).

The importance of the IFN response in controlling cytomega-
lovirus infection is exemplified by the hypersensitivity of engi-
neered mice with defects in the IFN response to murine cytomeg-
alovirus (MCMV) replication and disease (7, 8). Although CMV
encodes a number of gene functions that modulate the IFN re-
sponse by inhibiting both the production of and response to IFNs
(9–17), HCMV infection is still capable of inducing IFN-�, via an
interferon regulatory factor 3 (IRF3)-dependent pathway, in hu-
man fibroblasts (HF) (9, 15, 18–25). Furthermore, treatment with
exogenous type I and type II IFNs is known to restrict HCMV
infection/replication in vitro and in vivo (9, 12, 26–28), confirming
the sensitivity of HCMV to IFN-mediated control. Despite a num-
ber of reports investigating the IFN response to HCMV, the effect
of abrogating the IFN response on HCMV infection and replica-
tion, to our knowledge, has not previously been investigated and
was studied here using engineered cell lines.

Generation of IFN-deficient cell lines. To investigate the effect
of abrogating the IFN response on HCMV replication, the known
abilities of the nPro protein of bovine viral diarrhea virus (BVDV)
to target IRF3 (blocking IFN-� production) (29) and of the V
protein of parainfluenza virus type 5 (PIV-5) to target STAT1
(blocking IFN responsiveness) (30, 31) were utilized. Lentivirus
vectors expressing the nPro and V genes, respectively, were gen-
erated as described previously (29). Primary HF from the ATCC
(HFF-1) were transduced with the lentiviruses, and cells were se-
lected using 1 �g/ml puromycin. To test whether nPro/HF could
produce IFN-� in response to HCMV infection, parental HF and
nPro/HF were infected with HCMV strain Merlin and IFN-� lev-

els were measured at 24 h postinfection (p.i.) using a high-sensi-
tivity enzyme-linked immunosorbent assay (ELISA) (PBL Assay
Science). While IFN-� was induced by HCMV infection in paren-
tal HF, IFN-� protein was not detectable in nPro/HF samples (Fig.
1A). In addition, V/HF did not respond to IFNs even when stim-
ulated with 1,000 pg/ml of IFN-� as determined by monitoring
the relative mRNA levels of the ISGs protein kinase R (PKR) and
ISG15 by quantitative reverse transcription-PCR (qRT-PCR) (Fig. 1B
and C) using a published protocol (32). The sequences of the
primers used are indicated: GAPDH-F, 5=-TGTTCGTCATGGGT
GTGAAC-3=; GAPDH-R, 5=-GGTGCTAAGCAGTTGGTGGT-
3=; PKR-F, 5=-GCTGAGCACAGGGCTAGAAG-3=; PKR-R, 5=-A
ACACCCTGGCATATAGTTGGA-3=; ISG15-F, 5=-GCGAACTC
ATCTTTGCCAGTA-3=; ISG15-R, 5=-AGCATCTTCACCGTCA
GGTC-3=.

IFN-deficient cell lines promote enhanced viral spread. Ti-
ters of three distinct HCMV strains (Merlin, TB40/E, and FIX)
were each determined in parallel on nPro/HF, V/HF, and the pa-
rental HF. Interestingly, inhibiting the IFN response did not alter
the efficiency with which HCMV infection induced plaque forma-
tion (Table 1); however, it did result in an obvious increase in
plaque size. To quantify plaque size, cells were infected with the
same three HCMV strains (multiplicity of infection [MOI] of
0.0005) and cultured under an Avicel overlay for 7 days, then
plaques were imaged using an XM10 camera on an Olympus IX51
microscope, and plaque size was measured using CellSens soft-
ware (Olympus). All three viruses produced significantly larger
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plaques on both nPro/HF and V/HF than on parental HF (Fig. 2A
to C and E), indicating that the IFN response plays a significant
role in controlling HCMV spread in fibroblasts.

A confounding issue in HCMV research has been the propen-
sity for virus mutants, most notably in RL13 and UL128L, to be
rapidly selected following in vitro culture (33–36), creating diffi-
culties in culturing viruses that are genetically intact over time.
HCMV variants with an intact UL128L are much more cell asso-
ciated and produce smaller plaques (37). We sought to investigate
whether the reduced cell-to-cell spread of UL128L intact viruses
could be rescued by inhibiting the IFN response. The three cell
types were transfected with a UL128L� bacterial artificial chromo-
some (BAC) based on the Merlin strain (pAL1160), before being
cultured under an Avicel overlay. Plaques were again imaged and
measured as described above (Fig. 2D). In both the IFN-deficient
cell lines, there was a significant increase in plaque size over that in
transfected parental HF.

HCMV replicates more efficiently on nPro/HF and V/HF. To
determine if the increase in plaque size detected in nPro/HF and
V/HF made a significant difference in the rate of spread and infec-
tion of HCMV, these cell types and parental HF cells were infected

at an MOI of 0.01 with a BAC (pAL1158)-derived Merlin strain,
expressing enhanced green fluorescent protein (EGFP) via an in-
ternal ribosome entry site (IRES) downstream of IE2 (33), before
the number of GFP� cells was enumerated by flow cytometry
using a FACSCanto cytometer (BD Biosciences) and FlowJo soft-
ware (TreeStar Inc.) at 3-day intervals p.i. (Fig. 3A). There was a
profound enhancement in the rate of viral replication and spread
in both the nPro/HF and V/HF cells compared to parental HF
with a significant increase in the number of GFP� cells detected at
6, 9, and 12 days p.i. (P � 0.0001) (Fig. 3A).

Virus production from each of the cell lines was monitored by
a multistep growth curve following HCMV infection (Merlin) at
an MOI of 0.01. Infectious virus released into the supernatant at
3-day intervals was measured by titration on parental HF. Consis-
tent with the enhanced spread of virus (Fig. 3A), the production of
infectious virus was also accelerated in nPro/HF and V/HF with
significant differences in the amount of virus produced at both 6
and 9 days p.i. (P � 0.05) in the IFN-defective cells compared to
parental HF (Fig. 3B). Interestingly, however, the overall peak
titers of infectious virus release (day 9 for nPro/HF and V/HF; day
15 for HF) were not significantly different between each of the cell
lines, indicating that abrogation of the IFN response does not
affect the overall production of virus from cells but rather that the
rate of replication is decreased in the presence of a functioning
IFN response. We also performed similar studies using previously
generated immortalized MRC5 cells engineered to express the V
protein (31) infected with the Toledo/AD169 strains of HCMV.
Infection of the MRC5-V cells was associated with faster spread
and more rapid replication of HCMV (data not shown), indicat-
ing that enhancement of infection is not limited to a particular
type of fibroblast. While it remains a possibility that the reason

FIG 1 (A) Supernatants from HF and nPro/HF infected with the HCMV strain Merlin at an MOI of 3 were harvested at 24 h p.i. before IFN-� levels were
measured by ELISA (n � 6 for HFF-1, n � 3 for nPro/HF). (B and C) HF and V/HF were mock treated or treated with 1,000 pg/ml IFN-� before relative mRNA
levels of PKR (B) and ISG15 (C) were determined by qRT-PCR at 6 h posttreatment. Statistical significance compared to the parental HF cells for the V/HF cell
line was tested using a two-tailed paired t test (n � 3; *, P � 0.05), and error bars indicate the standard errors of the means.

TABLE 1 Titration of HCMV strains on HF, nPro/HF, and V/HF cell
lines

Strain

Titer on cell line:

HF nPro/HF V/HF

Merlin 2.47 � 106 1.82 � 106 1.05 � 106

TB40/E 2.27 � 107 3.10 � 107 1.75 � 107

FIX 2.05 � 106 3.12 � 106 1.35 � 106
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why expression of nPro can enhance CMV replication may be due
to effects that it has on the cell other than blocking IFN induction,
the fact that abrogating IFN signaling by expressing the V protein
similarly enhances CMV replication makes this extremely un-
likely.

Despite the range of proteins that HCMV encodes to inhibit
the IFN response, this study demonstrates for the first time that
IFN induction following HCMV infection still has a profound
effect on the ability of the virus to replicate efficiently. A previous
report examining the ability of V-expressing fibroblasts to en-
hance virus replication demonstrated a significant increase in
plaque size and virus replication for other viruses, including PIV-2
and -5, adenovirus, mumps virus, measles virus, and canine dis-
temper virus, but not for the large DNA viruses herpes simplex
virus 1 (HSV-1) and vaccinia virus (31). As with HCMV, it is

known that pretreatment with both type I and type II IFNs inhibits
HSV-1 infection and replication (38, 39). However, in a related
study examining the effect of independently derived V- and nPro-
expressing fibroblasts on HSV-1 growth, there was no enhance-
ment of viral infection/replication in IFN-deficient cell lines (39),
which illustrates a significant difference between related herpesvi-
ruses on the effect of IFNs in controlling replication. Thus, the
replication kinetics of other herpesviruses on these cell lines will
be an important component of future studies to determine the
relative importance of IFN induction in limiting their replication.

The cell lines generated will also be useful tools to examine IFN
responses following HCMV and other viral infections; indeed, we
have recently used these cell lines to help identify a role for
HCMV-induced IFN-� in upregulating the ISG galectin-9 (32).
Such cell lines can also be used to culture viruses defective in IFN

FIG 2 (A to C) The indicated cells were infected with the Merlin (A), TB40E (B), and FIX (C) HCMV strains at an MOI of 0.0005. The cells were cultured under
an Avicel overlay for 7 days before plaque size was measured. (D) The indicated cells were transfected with the UL128 intact HCMV BAC (pAL1160) and cultured
under an Avicel overlay for 13 days before plaque size was measured. Each data point represents an individual plaque. Statistical significance compared to the
parental HF cells for both nPro/HF and V/HF cell lines was tested using a two-tailed unpaired t test (*, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001).
(E) Representative images of plaques formed from Merlin strain infection of HF, nPro/HF, and V/HF at 7 days p.i.
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regulatory genes, potentially grow UL128L intact viruses more
rapidly, enhance the replication of HCMV clinical isolates directly
from clinical material due to more rapid spread, and investigate
the effect of individual ISGs on viral replication in the absence of a
functional IFN response.
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